Exercise 33

Find the critical numbers of the function.

$$
g(t)=t^{4}+t^{3}+t^{2}+1
$$

Solution

A critical number is a value of t for which the derivative is zero or nonexistent. Take the derivative of the function.

$$
\begin{aligned}
g^{\prime}(t) & =\frac{d}{d t}\left(t^{4}+t^{3}+t^{2}+1\right) \\
& =\left(4 t^{3}\right)+\left(3 t^{2}\right)+(2 t)+(0) \\
& =4 t^{3}+3 t^{2}+2 t
\end{aligned}
$$

Set $g^{\prime}(t)=0$ and solve for t.

$$
\begin{gathered}
g^{\prime}(t)=0 \\
4 t^{3}+3 t^{2}+2 t=0 \\
t\left(4 t^{2}+3 t+2\right)=0 \\
t=0 \quad \text { or } \quad t=\frac{-3 \pm \sqrt{(-3)^{2}-4(4)(2)}}{2(4)} \\
t=0 \quad \text { or } \quad t=\frac{-3 \pm \sqrt{-23}}{8} \\
t=0 \quad \text { or } \quad t=\frac{-3 \pm i \sqrt{23}}{8}
\end{gathered}
$$

Only real values can be critical numbers of the function, so

$$
t=0 .
$$

